
Digital Twin and Semantic-Aware Multi-Agent RL
for Maritime Search and Rescue Operations

(Invited Paper)

Bishmita Hazarika∗, Octavia A. Dobre∗, and Trung Q. Duong∗,†
∗Memorial University, Canada, e-mail:{bhazarika, odobre, tduong}@mun.ca

†Queen’s University Belfast, UK, e-mail: trung.q.duong@qub.ac.uk

Abstract—Effective maritime search and rescue (SAR) requires
fast, coordinated action from Internet of Maritime Things
(IoMT) nodes operating under extreme communication, energy,
and environmental constraints. Existing solutions treat semantic
sensing, digital twin modeling, and decentralized control in
isolation, limiting their responsiveness and scalability. We propose
SEMADT-RL, a unified framework that integrates semantic-
driven communication, predictive digital twin forecasting, and
decentralized multi-agent deep reinforcement learning with graph
attention networks (MADRL-GNN). The semantic layer enables
lightweight, anomaly-triggered updates, significantly reducing
bandwidth while preserving critical detection cues. The digital
twin assimilates these updates using an extended Kalman
filter to forecast survivor drift and node dynamics. These
forecasts guide decentralized agents that collaboratively optimize
mobility, processing, and transmission policies under dynamic and
constrained maritime conditions. Simulation results demonstrate
that SEMADT-RL achieves faster survivor detection, lower
communication overhead, and higher energy efficiency than
state-of-the-art baselines, providing a scalable solution for next-
generation IoMT-assisted SAR operations.

I. INTRODUCTION

MARITIME search and rescue (SAR) operations face
significant challenges in locating and assisting survivors

dispersed over vast oceanic regions. Traditional sensor networks
and manual search efforts are often limited by communication
bottlenecks, dynamic environmental factors, and constrained
energy resources. With the emergence of the Internet of
Maritime Things (IoMT), a network of semi-autonomous
buoys, surface vehicles, and drones, a new opportunity
has arisen to coordinate distributed assets for timely and
efficient SAR missions [1]. However, IoMT deployments must
address stringent requirements on communication efficiency,
decentralized control, and environmental adaptability under
highly dynamic maritime conditions. Despite offering expanded
sensing and actuation capabilities, IoMT nodes inherently
suffer from limitations in bandwidth, energy, and onboard
processing power. In particular, transmitting full-resolution
sensor data in real-time can quickly exhaust wireless capacity
and battery resources, leading to significant delays or even
mission failures [2]. This motivates a shift toward more efficient
communication paradigms that prioritize critical information
over raw data transfer.
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In this regard, semantic communication has emerged as a
promising strategy for efficient and task-driven information
exchange. Unlike conventional systems that aim to transmit raw
bit sequences, semantic communication focuses on transmitting
only the meaning-bearing elements most critical to a given
task [3]. Although originally inspired by human language
communication, the concept of semantics has since evolved
to encompass task-relevant features extracted from non-
linguistic sources such as sensor readings, video frames,
and radar data [4]. In autonomous and vision-based systems,
this typically involves transmitting compact descriptors—such
as detected anomalies, object positions, or latent semantic
embeddings—instead of raw sensor streams. Recent works
demonstrate that semantic-aware designs can significantly
reduce bandwidth, lower energy consumption, and improve
task completion rates across edge computing, vehicular
networks, and UAV swarms [5]. However, directly applying
semantic compression in dynamic maritime environments
presents unique challenges: high mobility, uncertain drift
dynamics, strict survivor detection deadlines, and severe energy
constraints.

Another critical challenge lies in the lack of predictive
situational awareness among IoMT nodes. While semantic
encoding compresses information, nodes often act only on
delayed or incomplete local observations, leading to suboptimal
decisions and wasted movements [6]. To mitigate this, digital
twin (DT) technology, a virtual replica that mirrors and
forecasts the physical state of the environment, has recently
gained attention [7]. Works such as [8] have shown that DTs can
enhance coordination in vehicular and industrial IoT settings.
Yet, in maritime rescue scenarios, existing DT implementations
either assume high-fidelity real-time data availability or neglect
the sparse, noisy observation patterns typical of open-sea
operations [9].

Moreover, decentralized decision-making is paramount for
the scalability and robustness of large IoMT fleets. While
centralized reinforcement learning (RL) can optimize control
policies with full-state information [10], it suffers from
poor scalability and delayed responsiveness under real-world
communication constraints [11]. On the other hand, multi-agent
deep reinforcement learning (MADRL) has shown success
in decentralized robotics and UAV networks [12], enabling
agents to learn local policies based on partial information [13].
Nevertheless, standard MADRL methods are often handicapped



by noisy sensing, lack of semantic abstraction, and an inability
to anticipate future environmental changes [14].

However, although semantic communication, DTs, and
MADRL have each shown independent potential for
enhancing efficiency, situational awareness, and decentralized
decision-making, existing research has largely pursued these
technologies in isolation or in limited pairwise combinations.
Crucially, none of the existing works has addressed the deep
interdependence between semantic information extraction,
predictive environment modeling, and distributed policy
learning—an interdependence that becomes especially critical
in dynamic, resource-constrained IoMT-based maritime search
and rescue. In such environments, semantic compression
without predictive forecasting risks missing critical survivor
drift patterns, while digital twins without real-time semantic
updates suffer from outdated or noisy state estimation.
Similarly, decentralized control without semantic abstraction
leads to inefficient sensing and excessive energy expenditure.
Thus, the absence of a unified architecture that jointly
optimizes compression, prediction, and policy learning not
only limits performance but fundamentally constrains the
scalability and resilience of IoMT SAR systems.

Motivated by the challenges of real-time survivor detection,
constrained resources, and decentralized coordination in
maritime environments, we propose SEMADT-RL: a unified
framework that integrates semantic sensing, predictive digital
twin forecasting, and decentralized MADRL based on graph
attention networks. By coupling these components, the
framework enables IoMT nodes to reason predictively about
survivor dynamics, energy usage, and communication tradeoffs
under uncertainty. The key contributions of this work are
summarized as follows:

• We formulate a maritime search-and-rescue (SAR)
problem that jointly optimizes survivor detection, energy
efficiency, semantic fidelity, and communication reliability
under mobility, energy, and sensing constraints, leading to
a structured non-linear constrained optimization problem.

• We develop a lightweight semantic sensing layer where
IoMT nodes encode high-dimensional sensor inputs into
low-rate latent descriptors using a variational autoencoder
(VAE), triggering transmission based on reconstruction-
based anomaly detection to preserve bandwidth and
energy.

• We construct a DT model using an Extended Kalman Filter
(EKF) that fuses semantic observations to forecast survivor
drift, environmental evolution, and energy dynamics,
allowing anticipatory node coordination rather than
reactive control.

• We design a decentralized actor–critic control layer using
graph attention mechanisms, where each node aggregates
local and neighbor information along with DT forecasts
to optimize its mobility, computation, and communication
decisions in real-time.

• Through simulations in a dynamic maritime environment,
we validate that SEMADT-RL significantly improves
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Fig. 1: Illustration of the maritime IoMT system.

survivor detection rates, reduces communication overhead,
and sustains energy-efficient operations compared to non-
predictive or non-semantic baselines.

II. SYSTEM MODEL

We propose a Search & Rescue (SAR) framework
in a maritime domain, where a swarm of IoMT
nodes—such as autonomous surface vehicles or specialized
buoys—collaborates to locate and assist survivors following
a distress event at sea. The operational environment is
modeled as a two-dimensional region with potential no-sail
zones (e.g., reefs or hazardous waters) and time-varying
environmental factors (wave height, currents) that can
displace survivors. Each IoMT node has limited energy,
computation, and communication resources, compelling an
intelligent approach to onboard data processing and node
collaboration. Fig. 1 provides a schematic overview of the
overall system architecture, highlighting the flow of raw
sensing, semantic compression, wireless communication, and
predictive coordination.

A. Maritime Environment

We consider a two-dimensional maritime region R ⊂ R2

of size Mx ×My meters. Let p = (x, y) denote coordinates
within R. Time is discretized into intervals t ∈ {0, 1, . . . , T} of
duration ∆t seconds. The region R may include no-sail zones
Z(t) ⊂ R that represent dangerous or restricted areas such as
reefs or debris fields, and these zones can evolve over time due
to changing conditions.

A distress event originates at a location sinit ∈ R. From
this event, a set of survivors S = {1, . . . , Nsurv} is introduced,
each with an initial position sj(0) = sinit or near it. Over time,
survivor j drifts according to:

sj(t+∆t) = sj(t) + vdrift(t)∆t+ ηj(t), (1)

where vdrift(t) captures prevailing sea currents and winds, and
ηj(t) is a random offset representing local turbulence. Each



survivor j must be detected or assisted within a critical survival
time τj , beyond which rescue probabilities drop substantially.

B. IoMT Nodes

A set of Nnode IoMT nodes, indexed by i ∈ {1, . . . , Nnode},
operates within R. Each node may be an autonomous surface
vessel, a buoy with partial mobility, or a coastal station acting
as an edge server. The position of node i at time t is pi(t),
subject to

∥pi(t+∆t)− pi(t)∥ ≤ vmax,i ∆t, pi(t) /∈ Z(t), (2)

where vmax,i is node i’s maximum velocity, and Z(t) is the no-
sail zone at time t. Each node has a maximum energy Emax,i,
a CPU frequency limit fmax,i, and a communication power
budget that governs how data is exchanged with other nodes
or a central aggregator. The total energy consumed by node i
from time t to t+∆t is denoted Etotal,i(t) and must not exceed
Emax,i.

C. Digital Twin Framework

A DT maintains an on-shore replica of both the maritime
environment and the IoMT fleet. Its state snapshot at time t is

DT (t) =
{
E(t), S1(t), . . . ,SNnode

(t)
}
, (3)

where E(t) =
[
W (t), Ω(t), Z(t), . . .

]
stacks the global

environmental fields: significant wave height W (t), wind vector
Ω(t), and the current no-sail zone Z(t) (see Section II-A);
Si(t) =

[
p̂i(t), Êi(t), v̂i(t), γ̂i,j(t), . . .

]
holds node-specific

forecasts: recommended future position p̂i(t), projected
residual energy Êi(t), velocity advice v̂i(t), and predicted
SINR γ̂i,j(t) to neighbour j. Whenever new information z(t)
(e.g. semantic packets, GNSS tracks) arrives, the DT advances
according to

DT (t+∆t) = Φ
(
DT (t), z(t)

)
+ ϵ(t), (4)

where Φ(·) implements physics-based prediction of
environmental fields, survivor drift, and battery decay,
and ϵ(t) captures modelling error. Recommended actions such
as v̂i(t) and off-loading schedules are broadcast to the fleet;
each node may follow or locally adapt the guidance.

D. Node Mobility and Energy Consumption

Node i updates its position according to (2), ensuring that
it remains outside Z(t). The cost of moving from pi(t) to
pi(t+∆t) is

Emov,i(t) = Pmov,i

∥∥pi(t+∆t)− pi(t)
∥∥, (5)

where Pmov,i is a movement power coefficient. The
computation energy for local data processing at frequency fi(t)
and processing time Tproc,i(t) is

Ecomp,i(t) = κi

(
fi(t)

)2
Tproc,i(t), (6)

with κi capturing hardware efficiency. Communication energy
arises when node i transmits data at power Pi(t) over time
Ttr,i(t):

Ecom,i(t) = Pi(t)Ttr,i(t). (7)

The total energy for node i is

Etotal,i(t) = Emov,i(t) + Ecomp,i(t) + Ecom,i(t), (8)

which must satisfy Etotal,i(t) ≤ Emax,i.

E. Semantic Communication Model

Each node i carries sensors that capture high-volume data
oi(t), such as images or radar sweeps of the local ocean surface.
Instead of transmitting raw data, node i uses an encoder

Xi(t) = sem-enc
(
oi(t)

)
(9)

that extracts only the essential semantic content, for instance
bounding boxes around detected objects or textual descriptors
of anomalies. A channel encoder ch-enc(·) then modulates
Xi(t) for wireless transmission. If node j is the receiver, the
received signal is

Yj,i(t) = Gi,j(t)X
′
i(t) + Ij,i(t) +Nj(t), (10)

where Gi,j(t) is the channel gain, Ij,i(t) represents
interference, and Nj(t) is noise. The signal-to-interference-
plus-noise ratio γj,i(t) governs the achievable data rate

rj,i(t) = B log2
(
1 + γj,i(t)

)
. (11)

If the semantic descriptor has size Di(t) bits, node i needs
transmission time

Ttr,i(t) =
Di(t)

rj,i(t)
. (12)

At the receiver, the decoding process inverts ch-enc and applies
sem-dec(·) to recover a compact representation ô

(sem)
i . A high

overlap or cosine similarity between oi(t) and ô
(sem)
i indicates

that the semantic meaning was effectively preserved.

F. Multi-Objective Utility Function

Each IoMT node aims to promptly detect survivors,
efficiently conserve energy, maintain balanced computational
workloads, and closely follow recommendations provided by
the DT. We thus define the per-node utility Ui(t) as the sum
of four mathematical objectives:

Ui(t) = Udet,i(t) + Uen,i(t) + Ubal,i(t) + CDT,i(t). (13)

The survivor detection utility, Udet,i(t), quantifies how
rapidly survivors within node i’s sensing range at time t are
detected. It explicitly rewards early detection and penalizes
missed deadlines as follows:

Udet,i(t) =
∑

j ∈Si(t)

exp

(
τj − δi,j

τj

)
− 1{δi,j > τj} · Cplty,

(14)
where Si(t) is the set of survivors detectable by node i at time t,
δi,j denotes the elapsed time between the distress event and the
detection of survivor j by node i, and τj is the critical survival
deadline for survivor j. The indicator function 1{δi,j > τj}
applies a fixed penalty Cplty when survivor detection occurs
after the deadline, strongly incentivizing prompt detection. The



energy efficiency utility, Uen,i(t), incentivizes minimal energy
consumption and is normalized by node i’s maximum onboard
energy budget Emax,i:

Uen,i(t) = 1− Etotal,i(t)

Emax,i
, (15)

where Etotal,i(t) represents the total energy consumed by node
i at time t (as detailed in (8)). The load-balancing utility,
Ubal,i(t), promotes equitable distribution of computational and
detection workloads. It measures the alignment of node i’s
current load, Li(t), with the fleet-wide average load, L(t):

Ubal,i(t) = 1− |Li(t)− L(t)|
Lmax

, (16)
where Lmax normalizes the load difference, encouraging each
node to maintain a balanced workload relative to the fleet
average. Lastly, the DT compliance term, CDT,i(t), penalizes
deviations between node i’s actual velocity vi(t) and the
recommended velocity v̂i(t) from the DT:

CDT,i(t) = −αDT ∥vi(t)− v̂i(t)∥2, (17)
where the scaling parameter αDT > 0 determines the penalty
severity for deviations, ensuring nodes closely follow predictive
guidance provided by the DT for globally coordinated mission
execution.

III. PROBLEM FORMULATION & SOLUTION APPROACH

Over the finite horizon of T discrete decision steps,
every IoMT node updates its planned positions {pi(t)}Tt=0,
the CPU frequency fi(t) applied to on-board semantic
processing, and the transmit power Pi(t) used for wireless
links. These control variables jointly govern the rate at which
survivors are detected, the energy consumed by propulsion,
computation, and communication, and the reliability with which
compressed semantic descriptors reach neighbouring nodes and
the DT. Maximising the time-aggregated node utility defined
in Section II-F therefore yields the operating policy that best
balances detection speed, energy efficiency, load distribution.
The problem can be formulated as:

(P) : max
pi(·), fi(·), Pi(·)

T∑
t=0

Nnode∑
i=1

Ui(t) (18)

(C.1)
∥pi(t+∆t)− pi(t)∥

∆t
≤ vmax,i, ∀i, t,

(C.2) pi(t) /∈ Z(t), ∀i, t,
(C.3) Etotal,i(t) ≤ Emax,i, ∀i, t,
(C.4) δi,j ≤ τj , ∀i, ∀j ∈ S,
(C.5) fi(t) ≤ fmax,i, ∀i, t,
(C.6) ξi,k(t) ≥ ξmin, ∀ k, i, t,
(C.7) Pr

(
γj,i(t) < γmin

)
≤ ϵmar, ∀(i, j), t.

In the problem (P), (C.1) limits node speed, (C.2) enforces
avoidance of no-sail zones, (C.3) bounds total energy usage,
(C.4) guarantees timely survivor detection, (C.5) respects CPU
limits, (C.6) maintains semantic descriptor fidelity, and (C.7)
ensures reliable communication via SINR outage control.

Solving (P) requires joint optimization of mobility,
computation, and communication under partial observability
and strict constraints. Centralized methods are intractable,
and standard RL lacks predictive context. To address this,

in this study, we propose SEMADT-RL a scalable, three-
layer framework combining semantic compression, digital twin
forecasting, and decentralized multi-agent DRL for efficient,
foresight-driven control in maritime IoMT networks.

IV. PROPOSED SEMADT-RL FRAMEWORK

The goal of SEMADT-RL is to enable decentralized
coordination of maritime IoMT nodes to perform efficient
SAR under resource, safety, and latency constraints. The
framework addresses the intractability of solving (P) centrally
by decomposing it into three tightly coupled components: (1)
semantic sensing and anomaly detection, (2) predictive DT
forecasting, and (3) decentralized control via MAGAC-GNN.

A. Preliminaries and Notation

Each node i ∈ {1, . . . , Nnode} captures a raw observation
oi(t) at timestep t, e.g., an image or radar frame. The
compressed latent representation zi(t) ∈ R64 is computed
using a VAE, with anomaly detection triggering transmission
of a semantic packet Xi(t) = (µi(t),pi(t), t) to the DT. The
global state of the environment is represented as x(t), including
node positions pi(t), energy Ei(t), and survivor locations sj(t).
Each node’s local state for decision-making is

si(t) = [pi(t), Ei(t), Li(t), v̂i(t), Êi(t)], (19)

where Li(t) is processing load and v̂i(t), Êi(t) are DT
forecasts. The control action taken by each agent is:

ai(t) = [∆pi(t), fi(t), Pi(t)], (20)

where ∆pi(t) is the movement vector, fi(t) the CPU frequency,
and Pi(t) the transmit power.

B. Semantic Compression and Anomaly-Driven Updates

Each node trains a VAE encoder–decoder pair θi =
{θenc

i , θdec
i } using the ELBO loss:

LVAE,i(t) = ∥oi − ôi∥2 + βDKL(qθi(z|o)∥p(z)), (21)

where the KL divergence regularizes the latent space. An
observation is flagged anomalous if

erri(t) = ∥oi(t)− ôi(t)∥2 > Tano. (22)

In that case, a semantic packet Xi(t) is sent. Model updates
∆θi(t) are transmitted if:

∥∆θi(t)∥2 > εsync, (23)

and merged by the DT via FedAsync:

θglob ← (1− λ)θglob + λ∆θi(t). (24)



Algorithm 1 SEMADT-RL Algorithm

1: Initialize: θi, θglob, EKF state, πθ, Qϕ

2: for t = 0 to T do
3: for each node i do
4: Capture oi(t), compute anomaly via (22)
5: if erri(t) > Tano then
6: Transmit Xi(t) to DT
7: end if
8: if (23) holds then
9: Transmit ∆θi(t), update via (24)

10: end if
11: end for
12: DT runs EKF ((25)–(28)) and broadcasts forecasts
13: for each node i do
14: Form si(t), hi(t) via (29)
15: Select action via (30), apply it, compute Ui(t)
16: Compute Yi(t), Qϕ, πθ using (31), (32), (33).
17: end for
18: end for

C. Extended Kalman Filter-Based Digital Twin Forecasting

The DT maintains and updates a latent system state x(t)
using EKF. The process and measurement models are:

x(t+∆t) = f(x(t)) +w(t), w(t) ∼ N (0,Q), (25)
zi(t) = h(x(t)) + vi(t), vi(t) ∼ N (0,R). (26)

The posterior estimate x̂(t|t) is used to forecast per-node
control targets:

v̂i(t) = arg min
∥v∥≤vmax

∥pi(t) + v∆t− snn(t)∥, (27)

Êi(t) = Ei(t)− (Pi(t) + Pmov∥v̂i(t)∥)∆t. (28)

D. Decentralized Multi-Agent Actor-Critic with GAT

Each agent constructs a graph-augmented state from local
and neighborhood inputs:

hi(t) = GAT({sj(t) : j ∈ Ni(t)}), xi(t) = [si(t),hi(t)].
(29)

The actor selects an action:

ai(t) ∼ πθ(xi(t)), (30)

and the critic evaluates it via Bellman backup:

Yi(t) = Ui(t) + γQ′
ϕ(xi(t+ 1), π′

θ(xi(t+ 1))). (31)

The loss functions are:

Lcritic =
(
Qϕ(xi(t),ai(t))− Yi(t)

)2
, (32)

∇θJ(θ) = ∇θπθ(xi(t))∇ai
Qϕ(xi(t),ai(t)). (33)

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
SEMADT-RL framework for autonomous coordination in
maritime SAR operations. The evaluation includes details of
the adapted dataset and the simulation setup.

TABLE I: Simulation Parameters

Parameter Value Parameter Value
Mx,My 1000× 1000 m ∆t 2 s
T 200 steps Nnode 24
vmax,i 3 m/s Emax,i 1000 J
Pi(t) [0, 2] W Di(t) 256 bytes
Replay Buffer 50,000 Batch Size 128
GNN Hidden Dim 128 Attention Heads 8
Learning Rate 5× 10−4 γ (discount) 0.98
Training Epochs 1000 β (VAE) 1

A. Simulation Setup

We simulate a 1000× 1000m maritime region with Nnode =
24 IoMT agents over a T = 200-step horizon, using timestep
∆t = 2 s. We adapt the UAVDT dataset [15] where frames
are resized to 640 × 480 and passed through a semantic
encoder to extract 64-dimensional latent vectors. The DT runs
asynchronously, maintaining global forecasts via an extended
Kalman filter. Simulations are implemented in Python using
PyTorch, PyTorch Geometric, and Stable-Baselines3, on a
system with an Intel i7-14700 CPU and NVIDIA T400 GPU.
The simulation parameters are given in Tables I.

To evaluate the effectiveness of the proposed SEMADT-RL
framework, we compare it against the following representative
baselines:

• Semantic-MADRL, which omits DT forecasting to assess
the impact of prediction-free semantic control;

• Central-DRL, a centralized policy with full global state
access; and

• Flat-MAPPO, a decentralized MARL baseline without
semantic encoding or DT support. These baselines
highlight the importance of semantic compression and
predictive coordination in maritime SAR.

B. Experimental Results

Fig. 2 shows the evolution of average utility Ui(t), which
captures task performance, energy use, and DT adherence.
SEMADT-RL achieves consistent and high utility growth by
aligning actions with forecasted survivor drift and energy
availability, enabling faster convergence to effective policies.
Semantic-MADRL shows early gains but flattens due to the lack
of foresight, leading to reactive and less coordinated behavior.
Central-DRL initially performs well with global knowledge but
suffers from poor scalability. Flat-MAPPO struggles throughout
due to unstructured sensing and energy inefficiency in the
absence of semantic or predictive guidance.

Fig. 3 shows cumulative survivor detection over time.
SEMADT-RL leads with early and sustained growth, driven
by forecast-aware mobility that accelerates coverage and
anomaly-based detection. Central-DRL starts strong due to full
observability but stagnates without drift prediction. Semantic-
MADRL lags due to reliance on local cues, missing survivors
in delayed or occluded regions. Flat-MAPPO performs worst,
with unstructured exploration leading to inefficient detection.

Fig. 4 shows average energy consumption per node.
SEMADT-RL achieves the lowest and smoothest consumption
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profile, enabled by DT-guided control that avoids redundant
movement and adapts power use based on forecasts. Semantic-
MADRL consumes more due to reactive behavior without
foresight. Central-DRL performs moderately well but fluctuates
as centralized decisions fail to scale. Flat-MAPPO is the least
efficient, with frequent, uncoordinated actions driving high
energy usage.

Fig. 5 shows how the anomaly detection threshold Tano
affects communication cost and survivor detection accuracy.
As Tano increases, fewer frames exceed the anomaly score,
reducing the number of transmitted semantic packets. The
communication cost is computed as:

Comm. Cost =
Nnode∑
i=1

T∑
t=0

1{erri(t) > Tano} ×Dsem, (34)

where Dsem is the packet size (typically 256 bytes).
However, higher thresholds risk missing subtle anomaly cues
under challenging conditions, degrading detection performance.
SEMADT-RL uses Tano = 0.1 to reduce communication by
over 50% while retaining survivor detection above 85%.

VI. CONCLUSIONS

In this paper, we presented SEMADT-RL, a three-layer
framework that tightly integrates semantic compression,
predictive digital twin modeling, and decentralized graph-
based reinforcement learning to address the challenges of
autonomous coordination in maritime IoMT-based search-
and-rescue operations. The proposed approach enables IoMT
nodes to efficiently perceive the environment, anticipate
future dynamics, and adapt actions collaboratively under
energy, mobility, semantic fidelity, and communication
constraints. Through extensive simulations, we demonstrated
that SEMADT-RL significantly outperforms baseline methods
in terms of survivor detection rates, energy conservation,
communication efficiency, and overall utility, particularly under
dynamic and uncertain maritime conditions.
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